
Capitalware's MQ Technical Conference v2.0.1.4

IBM MQ in a ‘Plex – Shared

Queues and Applications

Lyn Elkinsc – elkinsc@us.ibm.com

Capitalware's MQ Technical Conference v2.0.1.4

Agenda

 Why are shared queues so popular?

 Identify applications that are good candidates

 Common Pitfalls & Mitigation Techniques

 How do I tell the application group theirs is not a good candidate?

 What to do when no one will listen

2

Capitalware's MQ Technical Conference v2.0.1.4

Why are shared queues so popular?

 From an application perspective, ‘free’ continuous availability.
 Well behaved applications often require no changes at all.

 From an administration perspective, ‘almost free’ continuous availability.
 Well behaved applications in a stable sysplex computing environment often require a

limited number of administrative changes.

 From a hardware perspective, ‘expensive’ continuous availability – but a

reliable consistent technique that is used by every subsystem in the ‘plex.
 CF is not free

 From an infrastructure perspective
 Closely integrated with other z/OS Sysplex aware systems

 CICS

 IMS

 DB2

3

Capitalware's MQ Technical Conference v2.0.1.4

What Applications are good candidates?

 Zero or few affinities
 Ideally no serialization requirements

 Quick turn around
 Queue depth is consistently low

 Messages do not remain on the queue for an extended period of time

 Parallel processing

 Robust error checking/handling

 Small messages
 Unless you are using Shared Message Data Sets

 Frequent commits

4

Capitalware's MQ Technical Conference v2.0.1.4

Message affinities – Loose or Tight?

 Tight affinities
 Messages must be processed in strict

FIFO order

 Messages are processed by groups in a

specific order

 Groups can be very large

 Message grouping or other application

techniques to guarantee order have not

been implemented

 Loose affinities
 Message still must be processed in a

specific order

 Affinity is the exception, not the rule

 Limited number of messages in the group -

often only one

5

Capitalware's MQ Technical Conference v2.0.1.4

Tight Affinities - Examples

 An unlimited number of messages associated with a new order.
 PO header

 1-n PO line items

 PO trailer

 All requests have to be handled in strict sequence across the enterprise
 Demand deposits

 Stock purchases

 Inventory requests

6

Capitalware's MQ Technical Conference v2.0.1.4

Loose Affinities - Examples

 Typically the message affinities are the exception, not the rule. Examples

can include things like:
 New order with cancellation

 New customer with change request

 Often can be addressed with a simple application change:
 Application may have to rollback or re-MQPUT change request if initial input has not

been processed

7

Capitalware's MQ Technical Conference v2.0.1.4

Quick Message Throughput

 How long do messages remain on queues?
 If the answer is I don’t know, you might be in trouble.

 Look at queue accounting data – SMF116 queue records

 "+cpf START TRACE(A) CLASS(3)“

 Evaluate Periodic ‘DISPLAY QSTATUS’ commands

 Once is NOT enough!

 Use application information to determine rates

 Application logs

 Database logs

 Batch jobs need to be carefully evaluated

 Message size and throughput are contributing factors to CF structure size

needed

8

Capitalware's MQ Technical Conference v2.0.1.4

Quick Message Throughput – DISPLAY

QSTATUS Example

 /BWF0 DISPLAY QSTATUS('CICSTSTD*') all

 Result:
 QSTATUS(CICSTSTD.BRIDGE.QUEUE)
 TYPE(QUEUE)
 OPPROCS(0)
 IPPROCS(1)
 CURDEPTH(3)
 UNCOM(NO)
 MONQ(HIGH)
 QTIME(590,553)
 MSGAGE(13318)
 LPUTDATE(2007-02-01)
 LPUTTIME(16.40.26)
 LGETDATE(2007-02-01)
 LGETTIME(16.40.26)
 QSGDISP(QMGR)
 END QSTATUS DETAILS

9

Oldest message has

been on queue for >

3 hours!

Capitalware's MQ Technical Conference v2.0.1.4

Quick Message Throughput – DISPLAY

QSTATUS Example

 /BWF0 DISPLAY QSTATUS('CICSTSTD*') all

 Result:
 QSTATUS(SYSTEM.IP13.INOUT)
 TYPE(QUEUE)
 OPPROCS(0)
 IPPROCS(0)
 CURDEPTH(1)
 UNCOM(NO)
 MONQ(HIGH)
 QTIME(11122,12368)
 MSGAGE(6)
 LPUTDATE(2007-02-02)
 LPUTTIME(14.26.23)
 LGETDATE(2007-02-02)
 LGETTIME(14.26.23)
 QSGDISP(QMGR)
 END QSTATUS DETAILS

10

Oldest message has

been on queue for

6 seconds.

Capitalware's MQ Technical Conference v2.0.1.4

Parallel Processing

 Can server application be run in parallel?
 If not, why not?

 If the answer is yes, is it currently running that

way?

 Message (data) Serialization is the most

common issue
 Targeted serialization techniques

 Identify message relationships and target the

messages to the same queue

 Can achieve parallel processing while

maintaining serialization

 May require application changes

 Products like Message Broker can help

11

Capitalware's MQ Technical Conference v2.0.1.4

Small messages
 Message size matters!

 Messages greater than 63K are always stored in two parts:
 Message control information is stored on the CF structure

– This is one element and two entries

– Rounded to 1K for CF sizing estimates
These messages take more CPU
The message body storage depends on the version of MQ!

13

CF

Structure

Header

– Large Message Storage

– Message Body

Capitalware's MQ Technical Conference v2.0.1.4

Small messages
 MQ V7.0.1 – Large message storage:

 Message control information is stored on the CF structure

 Message body is always stored on a DB2 table.

 For MQ V7.1 and above:
 Message control information is stored on the CF structure

 Each Structure can identify an OFFLOAD location

– DB2 – Higher CPU cost, lower throughput

– Shared Message Data Sets (SMDS) – Lower cost, higher
throughput

 Each structure can have three offload rules
– Two attributes per rule:

» CF structure full percentage

» Maximum message body size to store on CF

14

Capitalware's MQ Technical Conference v2.0.1.4

Robust Exception handling

 Most common problem is running out of physical storage or queue
getting full
 2192 – MQRC_STORAGE_MEDIUM_FULL
 2053 - MQRC_Q_FULL

 How does application behave for the other CF Return Codes?
 2345 - MQRC_CF_NOT_AVAILABLE
 2348 - MQRC_CF_STRUC_AUTH_FAILED
 2349 - MQRC_CF_STRUC_ERROR
 2373 - MQRC_CF_STRUC_FAILED
 2346 - MQRC_CF_STRUC_IN_USE
 2347 - MQRC_CF_STRUC_LIST_HDR_IN_USE

 How does the getting application behave when it encounters a
poisoned message?

 How often are messages rolled back?

15

Capitalware's MQ Technical Conference v2.0.1.4

Message availability - Frequent commits

 Pulling applications cannot actually get the messages until they are

committed

 If commit counts are high (>100), CF storage might become constrained
 In addition VS in the QMGR address space might become constrained, but that’s

another issue

 If this is a tunable parameter, how often is it evaluated?

17

Capitalware's MQ Technical Conference v2.0.1.4

Common Pitfalls and Mitigation

Techniques

 Slow Servers

 Media Full
 A new experience for some applications

 A new opportunity for ‘sympathy sickness’

 Poisoned messages

18

Capitalware's MQ Technical Conference v2.0.1.4

What happens when the server

application is slow?

19

Requesting

Application

SHAREDQ1
Server

(Getting)

Application
Max Depth = 50

Put Rate = 20 mps

Commit Rate = 10

msg

Get Rate = 10 mps

Queue Depth = 10Queue Depth = 20Queue Depth = 30Queue Depth = 40Queue Depth = 50

MQPUT FAILS –

QUEUE FULL

Capitalware's MQ Technical Conference v2.0.1.4

Slow Server Mitigation –

What happens when we add a server application

instance?

20

Requesting

Application

Put Rate = 20 mps

Commit Rate = 10

msg

Server

(Getting)

Application

Server

(Getting)

Application

SHAREDQ1

Queue Depth

remains low

Get Rate = 10 mps

Get Rate = 10 mps

Capitalware's MQ Technical Conference v2.0.1.4

Slow Server Mitigation - Targeted

Serialization

 Targeted serialization:
 Divide the messages into multiple queues based on identifiable information within the

message itself

 This technique preserves the order of the data, allowing a parallel process to handle

each queue.

 Can be used when the distribution of data is known or can be determined.

 Common examples:
 Customer account numbers

 Item numbers

 Geographical location

21

Capitalware's MQ Technical Conference v2.0.1.4

Slow Server Mitigation –

Simple targeted serialization

22

Shared Queue

Depth

Remains

Low

Requesting

Application

SHAREDQ1

SHAREDQ1A

Server

(Getting)

Application

Server

(Getting)

Application

Accts 001-499

Accts 500-999

Capitalware's MQ Technical Conference v2.0.1.4

Slow Server Mitigation –

Using a broker for targeted serialization

23

Requesting

Application

SHAREDQ1

SHAREDQ1A

Server

(Getting)

Application

Server

(Getting)

Application

Accts 001-499

Accts 500-999

Broker

Capitalware's MQ Technical Conference v2.0.1.4

Media Full – New opportunities for unexpected return

codes and sympathy sickness

 The CF – Beach Front property, protected from
hurricanes:
 Typical CF is 32-64G, with 4-6G allocated to MQ for all the structures

 Minimum 2 structures for MQ (admin and application)
 Maximum private queue size is
 So, the CF Structures allocated to MQ are a fraction of the current maximum queue

size

 The CF is common to all

 Multiple queues defined on the same structure will
compete
 No different from multiple queues on the same pageset – but the available storage is

usually a lot smaller
 Careful positioning and monitoring of the queues is needed
 One application ‘running amok’ can impact every other application using the same

structure

24

Capitalware's MQ Technical Conference v2.0.1.4

Media Full – What to do when there is no

room?
 Applications may be set up to ‘throttle’ message puts

 Much like the message retry parameter on a receiver channel

 This only works if the message is being put locally

 Putting applications may stop or abend
 If there is a UOW in progress, it should be committed or rolled back

 Rolling back can free up some space

 ARM or scheduling software may be used to restart the application

 Be aware of possible loops

 Put inhibit the shared queue
 Often done by automated processes using QDEPTHHI and QDEPTHLO events

25

Capitalware's MQ Technical Conference v2.0.1.4

Problem Avoidance Techniques – What to

do when there is no room?

 Make sure ALLOWAUTOALT is set to YES on structure definition – even if

you do not allow the structure size to expand.
 Effects of letting the system set the entry/element ratio are described in the V7.1 and

7.5 Redbook

 Run multiple instances of the getting program
 Monitor queue depths and time on queue to determine when you need more instances

 Resize the queue
 May be done when structure is underutilized

 Resize the CF Structure

26

Capitalware's MQ Technical Conference v2.0.1.4

Problem Avoidance Techniques – What to

do when there is no room?

 Putting application can put to a secondary of back-up queue
 Usually a private queue

 Must move messages to the primary queue when the situation has been resolved

 Out of sequence issues possible

27

Capitalware's MQ Technical Conference v2.0.1.4

Message Backouts –

A different facet with shared queues

28

Requesting

Application

Invalid or Poisoned

Message Sent

Server

(Getting)

Application

Server

(Getting)

Application

SHAREDQ1

Message continues to

cycle, other messages

do not become stuck

behind it Gets Bad message,

rolls it back

Gets bad message,

rolls it back

Capitalware's MQ Technical Conference v2.0.1.4

Problem Avoidance Technique – Message

Backouts
 When messages are rolled back, the back out count is incremented

 Getting application should check this, and if it exceeds a predetermined

value put the message on a ‘backout queue’, a file, or discard the message

completely
 Not recommended to put ‘poison’ messages on the DLQ

 If poison messages are not handled properly, a bad message can become

a ‘Politician message’ – it impacts your processing, but never does

anything

29

Capitalware's MQ Technical Conference v2.0.1.4

How can an application group tell that

theirs is not a good candidate?

 Are there external constraints that may prevent the adoption?
 Batch window
 CPU constraints

 Historical analysis of private queue usage.
 Is queue depth frequently higher than the CF structure allocation will allow?
 Are there frequent rollbacks?
 Does the application only commit when Atlanta freezes?

 Historical analysis of application outages.
 If planned or unplanned outages regularly cause very high queue depths, this might

not be a good candidate.
 Analyzing this may not be politically palatable, but may be necessary.

30

Capitalware's MQ Technical Conference v2.0.1.4

Further information in real books

Capitalware's MQ Technical Conference v2.0.1.4

For more info … Already available (draft)

https://www.redbooks.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg248218.html

