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Agenda

 Why are shared queues so popular?

 Identify applications that are good candidates

 Common Pitfalls & Mitigation Techniques

 How do I tell the application group theirs is not a good candidate?

 What to do when no one will listen
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Why are shared queues so popular?

 From an application perspective, ‘free’ continuous availability.
 Well behaved applications often require no changes at all.

 From an administration perspective, ‘almost free’ continuous availability.
 Well behaved applications in a stable sysplex computing environment often require a 

limited number of administrative changes.

 From a hardware perspective, ‘expensive’ continuous availability – but a 

reliable consistent technique that is used by every subsystem in the ‘plex.
 CF is not free

 From an infrastructure perspective
 Closely integrated with other z/OS Sysplex aware systems

 CICS

 IMS

 DB2
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What Applications are good candidates?

 Zero or few affinities
 Ideally no serialization requirements

 Quick turn around 
 Queue depth is consistently low

 Messages do not remain on the queue for an extended period of time

 Parallel processing

 Robust error checking/handling

 Small messages
 Unless you are using Shared Message Data Sets

 Frequent commits
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Message affinities – Loose or Tight?

 Tight affinities 
 Messages must be processed in strict 

FIFO order

 Messages are processed by groups in a 

specific order

 Groups can be very large

 Message grouping or other application 

techniques to guarantee order have not 

been implemented

 Loose affinities
 Message still must be processed in a 

specific order

 Affinity is the exception, not the rule

 Limited number of messages in the group -

often only one
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Tight Affinities - Examples

 An unlimited number of messages associated with a new order.  
 PO header

 1-n PO line items 

 PO trailer

 All requests have to be handled in strict sequence across the enterprise
 Demand deposits

 Stock purchases 

 Inventory requests

6



Capitalware's MQ Technical Conference v2.0.1.4

Loose Affinities - Examples

 Typically the message affinities are the exception, not the rule.  Examples 

can include things like:
 New order with cancellation

 New customer with change request

 Often can be addressed with a simple application change:
 Application may have to rollback or re-MQPUT change request if initial input has not 

been processed
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Quick Message Throughput

 How long do messages remain on queues?
 If the answer is I don’t know, you might be in trouble.

 Look at queue accounting data – SMF116 queue records

 "+cpf START TRACE(A) CLASS(3)“

 Evaluate Periodic ‘DISPLAY QSTATUS’ commands

 Once is NOT enough!

 Use application information to determine rates

 Application logs

 Database logs

 Batch jobs need to be carefully evaluated

 Message size and throughput are contributing factors to CF structure size 

needed
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Quick Message Throughput – DISPLAY 

QSTATUS Example

 /BWF0 DISPLAY QSTATUS('CICSTSTD*') all

 Result:
 QSTATUS(CICSTSTD.BRIDGE.QUEUE)      
 TYPE(QUEUE)                         
 OPPROCS(0)                          
 IPPROCS(1)                          
 CURDEPTH(3)
 UNCOM(NO)                           
 MONQ(HIGH)                          
 QTIME(590,553)                      
 MSGAGE(13318)                       
 LPUTDATE(2007-02-01)                
 LPUTTIME(16.40.26)                  
 LGETDATE(2007-02-01)                
 LGETTIME(16.40.26)                  
 QSGDISP(QMGR)                       
 END QSTATUS DETAILS 
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Oldest message has 

been on queue for > 
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Quick Message Throughput – DISPLAY 

QSTATUS Example

 /BWF0 DISPLAY QSTATUS('CICSTSTD*') all

 Result:
 QSTATUS(SYSTEM.IP13.INOUT)     
 TYPE(QUEUE)                    
 OPPROCS(0)                     
 IPPROCS(0)                     
 CURDEPTH(1)                    
 UNCOM(NO)                      
 MONQ(HIGH)                     
 QTIME(11122,12368)             
 MSGAGE(6)                      
 LPUTDATE(2007-02-02)           
 LPUTTIME(14.26.23)             
 LGETDATE(2007-02-02)           
 LGETTIME(14.26.23)             
 QSGDISP(QMGR)                  
 END QSTATUS DETAILS 
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Oldest message has 

been on queue for  

6 seconds.
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Parallel Processing

 Can server application be run in parallel?
 If not, why not? 

 If the answer is yes, is it currently running that 

way?

 Message (data) Serialization is the most 

common issue
 Targeted serialization techniques

 Identify message relationships and target the 

messages to the same queue

 Can achieve parallel processing while 

maintaining serialization 

 May require application changes

 Products like Message Broker can help
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Small messages 
 Message size matters!

 Messages greater than 63K are always stored in two parts:
 Message control information is stored on the CF structure

– This is one element and two entries

– Rounded to 1K for CF sizing estimates
These messages take more CPU
The message body storage depends on the version of MQ! 
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Small messages 
 MQ V7.0.1 – Large message storage:

 Message control information is stored on the CF structure

 Message body is always stored on a DB2 table. 

 For MQ V7.1 and above: 
 Message control information is stored on the CF structure

 Each Structure can identify an OFFLOAD location

– DB2 – Higher CPU cost, lower throughput 

– Shared Message Data Sets (SMDS) – Lower cost, higher 
throughput

 Each structure can have three offload rules
– Two attributes per rule:

» CF structure full percentage

» Maximum message body size to store on CF
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Robust Exception handling

 Most common problem is running out of physical storage or queue 
getting full
 2192 – MQRC_STORAGE_MEDIUM_FULL
 2053 - MQRC_Q_FULL

 How does application behave for the other CF Return Codes?
 2345 - MQRC_CF_NOT_AVAILABLE
 2348 - MQRC_CF_STRUC_AUTH_FAILED
 2349 - MQRC_CF_STRUC_ERROR
 2373 - MQRC_CF_STRUC_FAILED
 2346 - MQRC_CF_STRUC_IN_USE
 2347 - MQRC_CF_STRUC_LIST_HDR_IN_USE

 How does the getting application behave when it encounters a 
poisoned message?

 How often are messages rolled back?
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Message availability - Frequent commits

 Pulling applications cannot actually get the messages until they are 

committed

 If commit counts are high (>100), CF storage might become constrained
 In addition VS in the QMGR address space might become constrained, but that’s 

another issue 

 If this is a tunable parameter, how often is it evaluated?
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Common Pitfalls and Mitigation 

Techniques

 Slow Servers

 Media Full
 A new experience for some applications

 A new opportunity for ‘sympathy sickness’

 Poisoned messages
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What happens when the server 

application is slow?
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Slow Server Mitigation –

What happens when we add a server application 

instance?
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Slow Server Mitigation - Targeted 

Serialization

 Targeted serialization:
 Divide the messages into multiple queues based on identifiable information within the 

message itself  

 This technique preserves the order of the data, allowing a parallel process to handle 

each queue.  

 Can be used when the distribution of data is known or can be determined.

 Common examples:
 Customer account numbers

 Item numbers

 Geographical location
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Slow Server Mitigation –

Simple targeted serialization 
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Slow Server Mitigation –

Using a broker for targeted serialization 
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Media Full – New opportunities for unexpected return 

codes and sympathy sickness

 The CF – Beach Front property, protected from 
hurricanes:
 Typical CF is 32-64G, with 4-6G allocated to MQ for all the structures

 Minimum 2 structures for MQ (admin and application)
 Maximum private queue size is 
 So, the CF Structures allocated to MQ are a fraction of the current maximum queue 

size

 The CF is common to all 

 Multiple queues defined on the same structure will 
compete 
 No different from multiple queues on the same pageset – but the available storage is 

usually a lot smaller
 Careful positioning and monitoring of the queues is needed
 One application ‘running amok’ can impact every other application using the same 

structure
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Media Full  – What to do when there is no 

room?
 Applications may be set up to ‘throttle’ message puts

 Much like the message retry parameter on a receiver channel

 This only works if the message is being put locally

 Putting applications may stop or abend
 If there is a UOW in progress, it should be committed or rolled back

 Rolling back can free up some space

 ARM or scheduling software may be used to restart the application

 Be aware of possible loops 

 Put inhibit the shared queue
 Often done by automated processes using QDEPTHHI and QDEPTHLO events
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Problem Avoidance Techniques – What to 

do when there is no room?

 Make sure ALLOWAUTOALT is set to YES on structure definition – even if 

you do not allow the structure size to expand.
 Effects of letting the system set the entry/element ratio are described in the V7.1 and 

7.5 Redbook

 Run multiple instances of the getting program
 Monitor queue depths and time on queue to determine when you need more instances

 Resize the queue 
 May be done when structure is underutilized

 Resize the CF Structure
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Problem Avoidance Techniques – What to 

do when there is no room?

 Putting application can put to a secondary of back-up queue
 Usually a private queue

 Must move messages to the primary queue when the situation has been resolved

 Out of sequence issues possible
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Message Backouts –

A different facet with shared queues
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Problem Avoidance Technique – Message 

Backouts
 When messages are rolled back, the back out count is incremented

 Getting application should check this, and if it exceeds a predetermined 

value put the message on a ‘backout queue’, a file, or discard the message 

completely
 Not recommended to put ‘poison’ messages on the DLQ

 If poison messages are not handled properly, a bad message can become 

a ‘Politician message’ – it impacts your processing, but never does 

anything
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How can an application group tell that 

theirs is not a good candidate?

 Are there external constraints that may prevent the adoption?
 Batch window
 CPU constraints

 Historical analysis of private queue usage.
 Is queue depth frequently higher than the CF structure allocation will allow? 
 Are there frequent rollbacks?
 Does the application only commit when Atlanta freezes?

 Historical analysis of application outages.
 If planned or unplanned outages regularly cause very high queue depths, this might 

not be a good candidate. 
 Analyzing this may not be politically palatable, but may be necessary.
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Further information in real books
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For more info … Already available (draft)

https://www.redbooks.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg248218.html


